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I. INTRODUCTION

This paper describes a computer-assisted instructional (CAI) system

designed to teach and give practice in basic machine-language computer

programming. The system has been implemented on an IBM 360 using the

Conversational Programming System CPS). Numerous 2741 remote terminals

are available to the student so that access to the system can be

achieved quite easily. For the sake of clarity, the system will here-

after be referred to as MALT - a MAchine Language Teacher.

The machine-language which is taught is that of SEDCOM, a

Simulated EDucational COMputer as described in Booth [1]. SEDCOM is

a hypothetical 377 (octal) word computer with single-addressing and

one accumulator. It is quite similar in design to the Digital Equipment

Corporation PDP -8 computer. All instructions in SEDCOM are identical

to their counterparts in the PDP -8 instruction set with the exception

of the I/O commands.

SEDCOK was used in this research because it provides the student

with an excellent introduction to machine-language programming. Many

computer science courses assume a knowledge of programming on a .small

machine and SEDCOM provides just such a background. It is also

powerful enough to be used for non-trivial projects, yet small enough

in memory size to be applicable to a CAI tutorial environment.

Review of CAI Research

Most efforts in CAI during thi-past few years have been devoted

to creating systems which are more general in their applications and

1
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more powerful in their problem-solving abilities. This trend has quite

naturally led to the development of generative CAI systems. Such systems

have many important differences from their predecessor, frame-oriented

CAI. Frame-oriented CAI was inherently inefficient because all questions

and possible student responses had to be specifically determined and

programmed by the course author. As the student progressed through a

series of questions, the system would follow a tutorial path which was

pre-set by the author. Each response would cause a program branch and

another question would be asked. There was very little ability to

vary the material presented according to the needs of the student. There

was also much inflexibility because additions or revisions in the system

would often require massive amounts of re-programming. Frame,uriented

systems basicrlly allowed the computer to function only as a glorified

filing cabinet in that it presented material to the student in a pre-

determined, non-adaptive way.

Generative CAI systems, on the other hand, have allowed the

material presentation to be more nearly geared to the student's abilities.

Each user receives a variety of questions which closely reflects his

current achievement level. As his performance improves,the system

exercises less control and allows the student to perform more as an

2utonomous unit. Sikl6ssy [2] provides an 4xcellent discussion of

the major differences between generative and frame-oriented CAI.

Generative systems also allow a much greater flexibility because

questions and problems are determined by the system instead of the

course author. Modifications to the system become much less of an

ordeal thadfor the frame-oriented system. The range of possible

sample problems given to the student can be expanded quite easily by
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merely adjusting certain parameters in the generation heuristics. However,

changes in the general type of problems generated are very difficult for

either type of system. Each system is usually designed as a vehicle

for teaching a specific subject or type of problem, so changes

characteristically involve major system reorganization.

Koffman [3] describes the implementation of a generative CAI

system designed to teach an entire course in introductory computer

science. Each student receives instruction in a series of basic concepts

such as binary arithmetic, design of sequential circuits, minimization

of digital networks, or the like. The system is constantly analyzing

the student's performance to help select a suitable sequence of concepts

for him. It can also_function solely as a problem solver for use by

graduate or advanced_ under= graduate students.

Research in Teaching Programming

Recent research in teaching computer programming has focused only .

on higher-level languages 14,51. This is because these languages provide

an excellent introduction to the basic concepts of computer programming.

They possess certain characteristics, however, which limit their

effectiveness in a CAI environment. Because of their complexity, it

is impossible for the instructional system to determine the relative

correctness of a student program. The program may be actually executed .

or simulated but if the results are incorrect, the cause and location

of the program error cannot be established. The system may be able to

provide much instruction in basic programming concepts such as

the use of variables, loops, subroutines, etc., but its effectiveness

ceases when the student finishes designing his program. Since the
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system has not monitored the development of that program in any way,

it is,powerless to make judgements as to the program's effectiveness

and location of any errors which might.exist. The undesirable net

result is that the student is expected to judge the merits of his own

program.

Although this simulation procedure might be partially acceptable

for higher-level languages, it is unsuitable for machine-language

instruction. This is because programs written in machine-language

are more susceptible to minute errors in logic than are other types

of programs. Extreme care must be taken because, for example, a

successful program execution does not by any means guarantee that a

second trial will produce identical results. The initial state of

the machine may have a profound ef7ect on the final outcome whereas

this is not usually the case in dealing with user-oriented languages.

Consequently, it is better to monitor and verify the student's solution

program as it is being designed.

Machine-language was chosen for this research also because it

provides a more structured environment. A particular algorithm may

be implemented many different ways in higher-level languages while in

machine-language, fewer such possible solutions exist. This fact

allows the system to monitor a user program and isolate errors as they

occur.

Feurzeig and Wexelblat [4], have developed a system called

SIMON as a vehicle for teaching simple programming for use in the

fields of mathematics, physics and engineering. After being supplied

with a sample problem, the student attempts to design a solution

program. ,SIMON then tests this program against a "true" program
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supplied by the author. If the results differ, the system is unable

to help correct the error aside from determining if any program

variables are inappropriate to the computation. Although this may

in some cases be the cause of the error, it is likely that more program

analysis is necessary to correct the situation. Also, each problem

used by SIMON is specifically written and the solution programmed by

the course author. The system can neither generate norm solve its

own problems.

Fenichel and WeizenbaWm, 151, have also done extensive research

into computerized programming instruction. Their system, called

TEACH, is quite complex and is capable of teaching an entire course

in programming concepts. The course presently consists of eighteen

chapters, each one introducing the student to new programming principles.

Although the system appears to be quite effective and successful,

Fenichel freely points out that it attempts only syntactic program

corrections. and leaves the semantic analysis and correction of logical

errors to the student.

Norton and Slimick 161 describe a system which is most similar in

design to MALT. The two primary differences are that their system

uses a simple assembly language instead of machine-language and it

makes no attempt at analyzing student program errors. Their complete

system is composed of three major components: a "driver" which serves

as a student-curriculum interface, a simulated machine very similar

to SEDCOM, and an interpretive assembler. As the student types in

each assembly language statement it is coded in absolute form and

checked for syntactic correctness. Upon completion, the program is

"run" and the system determines the results which should have been
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obtained. The student is responsible for determining not only the

existence but also the location of any program errors.

The systems of both Norton and Fenichel have several similar

properties. Both provide the student with extensive instruction in

many different areas of programming. Though Norton focuses heavily

on a specific language, each system primarily strives to teach

programming concepts of a general nature. This is very difficult

in the HALT system due mostly to the simplicity of the SEDCOM

language. It was decided that the most effective means of teaching

the language was to actually guide the student through the use of it.

Program Generation and Verification

Considerable effort has also been devoted in recent years to

the dual problems of automatic program generation and proof of program

correctness. Manna and Waldinger (7j have developed a successful

algorithm for program generation. First, various program parameters

are established such as an input vector x, input predicate #(;),

partial function z = f(x), and output predicate ip(ic,z). 4(x) and 0(x,z)

are conditions which must be met if the input and output vectors are to

be considered appropriate to the process. The function z = f(W) is

precisely the operation which the program is intended to perform.

By deriving and proving theorems based on these quantities and

their relationship to the output predicate, a pr gram can be constructed

which implements the function f(x). These results are quite interesting

because they represent an amalgamation of much work done in related

areas such as mathematical analysis, theorem proving and set theory

applied to the relatively new field of program generation. The concepts

represented by Manna's work were found to be valid and useful in the



implementation of the MALT system. This will be explored more fully

in Chapter 6.

Overview of MALT System

The purpose of MALT is to teach the various techniques which are

used in programming. Inherent in this task, however, ; Jtity

of the system to determine when an error has been made in the student's

Program. MALT attempts, through constant monitoring of the student's

program, to determine not only the existence of logical errors, but

also their location in the program. This ability enables. the system

to be much like the human teacher; that is, it can note and correct

logical errors before they develop into undesirable programming habits.

MALT is a generative CAI system in two important senses. First,

it creates its own sample programming problems using a variety of

heuristic techniques which will be discussed later. It is not dependent

upon the course author for a complete supply of ready-made problems.

Instead, by beginning with only a series of basic problem elements or

sentences, it generates a problem which is consistent with the user's

present ability. Also, each problem contains several variable program

parameters which are generated randomly by the system. The result is

that the number of possible different problems a student may receive is

virtually limitless.

Another important way in which the system is truly generative is its

ability to design a solution program for the problem which it has,

generated. By using basic algorithms supplied by the course instructor,

the system can produce the actual machine code of a solution program.

This implies that the system is quite flexible since later alterations'

and extensions involve only the addition of new programming algorithms,
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not massive system reorganization.

The system attempts to tailor its presentation to fit the abilities

of the *-i.,1"ent. Any problem which is generated is designed to provide

the student with a challenge while not being beyond his capabilities.

The dialogue initiated by the system will also be governed by the

user's performance. A beginning student will receive a wide variety

of hints and suggestions for the design of his program. Also, his

errors will result in quite explicit and complete remedial messages.

the student progresses through the material he will receive less

system information and be given more freedom in his programming actions.

When the student achieves high proficiency, the systfim can function

purely as a problem-solver in that all programs are generated by it.

This facility is useful if a student desires to study examples of

advanced problems and their corresponding solution programs.

As the system questions the student, it is constantly developing

its own solution program for comparison with the student's program.

It is also continually updating its knowledge of the status of the

user's program. In this way a given programming concept is rarely

presented the same way more than once to a particular student. The

student's enjoyment of the system is thereby greatly enhanced because

he receives new dialogue with every problem.

Summary of System Operation

The actual operation of MALT is straightforward. After the student

identifies himself to the system his records are obtained and evalu-

ated. These records determine the amount of instructional guidance

which the student will receive. Next; a sample programming problem

suited to his abilities is generated. To help him design his program,



the system will then develop a logic chart, or list of "sub-tasks".

These, sub -tasks break the problem into a series of smaller, more

manageable steps and are of great help to the novice programmer.

As each sub-task is reached in the programming process, a

corresponding Concept Routine is entered which will guide tIm student
6

through the construction of that part of his program. During this phase

the student is constantly being given feedback as to the correctness

of his program. If his program introduces logical errors, the system

will point these out and offer helpful suggestions for their correction.

If the system feels that the student might benefit from observing his

program in operation, it also has the capability to simulate program

execution.

The system is constantly evaluating the student's performance

and updating his permanent file. This is necessary because his

achievement determines not only the difficulty of the problems given

him, but also the amount of interaction which he receives during the

design of his program.

This research effort has been intended primarily to overcome the

weaknesses in previous systems as described above. However, it is

hoped that the HALT system will be complimentary, not contradictory,

to earlier efforts. In some respects, the structure of the present

system is much more restricted than others. However, the techniques

and heuristic methods used in the system have wide applicability and

represent a significant basis for possible further research.

Although the entire'MALT system is quite large and complex, it

can be considered as a series of interconnected modules. Each such

module will be discussed in the following chapters. An overall view
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of the system organization is given in Chapter 2. Chapters 3 through 5

examineeach major component of the system in detail. These include

the Problem mid Logic Generator, Control Unit and the array of Concept

Routines. Chapter 6 discusses the program verification and simulation

abilities of the system. The student records and their evaluation

are considered in Chapter 7. The final chapter considers the

significance and possible expansion of the MALT system.



II. SYSTEM OPERATION

The operation of the MALT system has been designed to be as

flexible as possible. Although certain obvious restrictions must

always be placed upon the user when teaching programming in a tutorial

environment, the student nonetheless has been afforded maximum freedom

in the operation of the system. This enables the system to satisfy

the requirements of any user regardless of whether he is a beginner

desiring in-depth instruction or an experienced programmer wishing

only a moderate review.

.Level of Competence

The principal parameter which determines the amount of system'

interaction which the student receives is his LEVEL. This is a basic

system variable and is the only parameter which is utilized by every

system component. It determines to a large extent not only how much

instructional dialogue is initiated by the system, but also how much

freedom the user is allowed in the designing of his solution program.

It'also determines the difficulty of the problem which a student

receives.

The value of LEVEL is always in a range from 0 to 2.5. Upon a

student's first use of the system, his LEVEL is set to a value of

.3. This allows the student a certain margin-of freedom because it

is very possible that he might make several mistakes as be begins to

acquire facility with the system.,

As the Student increases his use of the system, his performance

11
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LEVEL will certainly tend to rise. This is practically assured because

the problems which are given to a beginning student are quite loW in

difficulty. If a student's LEVEL is consistantly in the 0-.5 range

for a long period of time, then either he is completely unsuited for

even beginning programming instruction or he is deliberately exhibiting

sub-standard performance. In either case his use of the system will

give him negligible benefical results.

During system operation the student will gain experience in many

different types of machine-language programs. As his programming

ability increases, so his LEVEL will also rise. This gradual increase

in the LEVEL is determined by his answers to system- generated questions

and by how well his solution program performs the functions assigned

to it. The system will tend to initiate more dialogue with a begin-

ning student, than with one who has gained some facility in programming.

The system will also place a few more restrictions on the begin-

ner in terms of the amount of freedom he is allowed in writing his

program. The philosophical basis for this design is that although

programming is definitely a "learn by doing" process, there are certain

concepts and techniques in basic programming which should be taught.

Once the student has been instri....ted in techniques which are generally

considered to be "good" programming habits, it is hoped that he will

continue to use them in later programming efforts. However, as he

progresses through the instructional sequence he becomes, in general,

free to use his own techniques.

The rate of progression through the programming material is not

fixed. It is obvious that while two students may be subjected to

equal numbers of system questions, the difficulty of these questions
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may vary drastically. This fact implies that all questions should

not be weighted equally by the system in the calculation of the

student's current LEVEL. Therefore, less difficult questions are

afforded considerably smaller importance than ones requiring more

programming ability or knowledge.

This variation of question weights is carried still further. Even

though a certain question may not affect a student's LEVEL to a large

degree, the magnitude of the LEVEL change depends on the correctness

of the response. As an illustration, a student who responds correctly

to a question should have his LEVEL increased a relatively small amount.

However, an incorrect response to the same question tends to indicate

that the system is operating above the student's programming ability.

In this case, his LEVEL should be decreased a significant amount to

place him-more in line with his ability.

When the student reaches a LEVEL of 2.5, it is assumed that he

has gained maximum facility in machine-language programming. Therefore,

the system will henceforth function only as a problem-solver in that

it will completely generate all programs for the user. This facility

is very useful to students who would like to observe examples of more

difficult problems and the structure of their solution programs.

Students at this LEVEL should be able to derive a great deal from thin

type of self-study. If the student still wishes to be quizzed on his

solution, he may press the console ATTENTION (ATTN) button and request

that his LEVEL be lowered as will be explained later.

All the techniques described are designed to progress the

student through the material at a maximum stable rate which is con-

sistent with his abilities. Since erratic fluctuations in the LEVEL
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are virtually impossible, it appears that this goal has been achieved.

Another method used by the system to tailor its presentation

to the ability of the user is to selectively alter the value of a

student's performance indicator, (FEU), depending on the difficulty

of the problem. This value represents the student's performance on

each of the three segments of each sample problem. It is added to

his current LEVEL only after the programming of each such primitive.

As the student programs each segment of his problem, his performance

is evaluated. This PERF value is then divided by a stability factor

to ensure that erratic changes in a student's LEVEL do not occur.

The stability factor is considerably smaller if the student's LEVEL

is less than 1.5 then if it is greater than this value. The end

result of this process is that a typical student will progress quickly

through the Simpler problems and tend to move more slowly through the

more difficult ones. This feature also insures that the student will

prog_ess through the problems in an orderly fashion. The material

is adjusted according to the student's performance but there is no

erratic change in presentation because a given question might or might

not have been correctly answered.

The technique of gradual advancement also lends itself nicely

to system alterations. If class results indicate that progress

through the material is not at the proper pace, a change of only one

statement in the Control Unit can remedy the situation. By selectively

altering the value of the stability factor which is divided into

PERF, the proper pace can be achieved without having to change all

Concept Routines. This facility has been used quite frequently and

it is felt that a reasonable presentation speed-has now been achieved.
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During the programming of any problem it is inevitable that

certain tasks are required of the student which seem quite easy to

him. If the student is required to perform these tasks completely with

full system interaction, considerable boredom and restlessness will

result. Therefore, if the system feels that a particular task, or

concept, is too easy for-the student, it will write the program segment

which performs the given task. In this way, valuable time is not

wasted on trivial or meaningless exercises.

System Components

There are four major components in the MALT system, each of which

will be discussed fully in later chapters. Figure 1 provides a block

diagram of the general system organization.

The first component is called The Problem Generator and is

responsible for constructing a problem and a list of "sub-tasks"

representing the logic necessary to solve the problem. The Problem

Generator consists of five system programs: one to generate the

problem and its parameters (gener), one to store the text for the

printing of the problem (prob),- and three to generate the program

logic (chart 1, chart 2, chart 3).

The second component to be considered is the Control Unit. It is

responsible for the orderly coordination of all-system activities. It

determines and maintains records of all parameters which will be

needed in the user's program. From the Control Unit, each Concept

.Routine is called to help the student design that segment of his

program.

Every fundamental concept or sub-task of machine-language



Block Diagram of System Organization
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programming is represented'hy one of the Concept Routines. Each

routine is composed of three phases: a generation, a teaching, and

a remedial phase. The generation phase has the ability to actually

write a program to solve the appropriate sub-task. The teaching phase

is concerned only with helping the user construct his own program.

The final phase is a collection of remedial statements and information

to help correct user errors.

The last major system component is the SEDCOM simulator. This

package is used whenever partial execution of the user's program

is desirable. Associated with the simulator is a Program Verifier

which enables the system to make detailed analyses as to the correct-

ness of the program and nature of any existing errors.- The simulator

is used only in isolated instances but nevertheless provides the user

with substantial insight into the programming process.

Modes of Operation

To enable MALT to satisfy the diverse desires of many users,

several modes of operation have been developed. There are two modes

reserved for student use and one mode for use by the instructor. The

primary mode is called the Student Mode and is used whenever the

student is enrolled in the appropriate computer science course. In

this mode, the student receives all facilities of the system and his

performance is monitored and stored in his permanent record. He is

afforded no choice concerning which system functions he may receive.

He is provided with a sample problem, a logic diagram consisting of a

-sequential listing of the-problem sub-tasks, and tutorial aid in the

designing of a solution program. If his performance has been exceptional,

hormver,_the system will function as-a problem-solver as described above.
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If the student is not currently enrolled in the course, the system

operates in the Non-Student Mode. This mode differs primarily in that

the student is not required to follow the usual instructional sequence

of the system. For instance, he may receive a problem of any diffi-

culty level, an appropriate logic chart, a solution_ program, or any

combination thereof. He may also receive tutorial instruction exactly

as if he were in the Student-Mode.

A second difference in the two student modes is that the student's

performance is'not permanently stored if the system is in the Non-

Student Mode. Although his performance is monitored throughout, it

is not saved for later reference because a permanent file has not been

established for him. However, his performance on general programming

concepts is included with that of the regular students. In this

manner, the overall record, of student achievement in machine-language

!

programming is made, more statistically representative.

If at any time_during system operation a user wishes drastic

changes in, or termination of, the presentation of the material he

may press the Attention (ATTN) button on the 2741 keyboard. This

action causes a routine to be entered which determines the user's

wishes. If he indicates that he wants to terminate system operation

completely, a flag,is set and control is returned to the Control Unit.

His records are then updated and operation halts. If however, ,he

indicates that he would like to progress either at a faster or slower

rate, his LEVEL is adjusted accordingly. The change remains permanent

regardless of his performance et the new level. This enables each

student to progress at a rate which he feels is appropriate, not

one dictated by the instructor or even the MALT system itself. Also,



19

his performance is readily available to the instructor in the form of

a percentage score, so he cannot influence his grade for the course

by selectively altering his own LEVEL.

The final mode of operation is the Instructor Mode. It is entered

by supplying a keyword to the system which can be changed periodically

by the instructor. In this mode, the instructor has several options

available. He may receive a class list, a record of the cumulative

achievement of each student, a complete history of every student's

performance, or an evaluation of class achievement on each of several

broad programming concepts. This flexibility enables the instructor

to observe not only general areas of class weakness but also specific

difficulties of any individual.

Finally, the instructor may reset any or all student files if they
.

begin to fill up. The system requires a special password for this

operation so that unauthorized access to student records is virtually

impossible. Figure 2 illustrates the use of the Instructor'Mode.

The system tailors its operation to the needs of the user through

the use of a numerical array called FLAGS. These values are set to

indicate many various conditions, primarily reflecting the current

mode of system operation. The array greatly facilitates the task of

system alteration because such changes involve merely adjusting the

initial value of a particular array element. Also, the number of

possible conditions which can be sensed by the system greatly enhances

its overall flexibility. Table 1 indicates the current values and

significance of each element of the FLAGS array.

Constraints of CPS

There are certain constraints placed upon the operation of MALT
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Table 1.

VALUE OF FLAGS ARRAY

VALUE MEANING

1 1 STUDENT WANTS ONLY PROBLEM-

2 STUDENT WANTS PROBLEM, SUB-TASKS

3 STUDENT WANTS ALL FACILITIES,NSM

4 STUDENT WANTS ALL FACILITIES,RSM

2 1 INSTRUCTOP WANTS CLASS LIST

2 INSTRUCTOR WARTS CONCEPT RATIOS

3 INSTRUCTOR WANTS STUDENT FILES

4 RESET ALL STUDENT FILES

5 RESET ONLY "PROBS" FILE
1

i

3 0 REGULAR STUDENT MODE

1 NON-STUDENT MODE

2 INSTRUCTOR MOOE

. - BLANK FOR FUTURE EXPANSION

5 - BLANK FOR FUTURE EXPANSION



by the very nature of the CPS system which deserve explanation. The

CPS system operates in an interpretive mode and is executed in low-

speed core on the IBM 360/65. This results in considerable delays

in program execution speed and system response time. As the number

of people using CPS at any given time increases, so also do the delays

in operation increase. At certain times these delays become virtually

intolerable especially for someone who is not familiar with CPS

operation. However, normally response times are about 3 seconds

which appears to be quite acceptable.

Another restriction placed upon the system by CPS is that of

storage space. The maximum size for-any giver. CPS program is four

pages, where each page represents four-thousand bytes of core storage.

Also, each user is allowed a maximum of twelve active pages in CPS

core at any given time. Since the control unit occupies four pages,

there can never be more than-eight additional pages active. This

limitation has been reached many times and corrective measures must

be taken whenever it occurs. It appears that system implementation

could have been considerably simplified if this restriction did not

exist.

A final problem inherent in the structure of CPS is the possibility

of computer system failure. A partial solution is the fact that the

system updates most of a student's records after each problem solution.

Nevertheless, much time and effort are usually wasted in the event of

a system failure.

Despite these limitations the CPS system performs well in an

interactive CAI environment. The process of interactive dialogue

with a terminal usually proves quite faginating and enjoyable to the

beginning student. It is hoped that possible future system improvements
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in CPS may remove some of the above restrictions. Such improvements

might include the use of high-speed instead of low,speed core storage,

or the allocation of more CPU time to the CPS system.

In all later discussions of the structure of SEDCOM, it should

be emphasized that while SEDCOM itself is obviously a binary (or

octal) machine, the CPS system operates only in the decimal mode.

This fact necessitates that all SEDCOM variables be stored internally

as character strings rather than numerical quantities. Although this

situation poses no great programming problems, it has a profound effect

on the length and operating time of any system program. For example,

the trivial act of incrementing a four-digit octal number requires

considerable time and character string manipulation to accomplish.

If this important limitation did not exist, a greater amount of time

could have been spent on expanding the overall scope of the MALT

system.

Now that the basic operation of the system is apparent, it is

necessary to discuss each of the system components in turn. The

first to be considered is the Problem and Logic Generation.



III. PROBLEM AND LOGIC GENERATION

The primary area in which the generative capabilities of MALT

are most evident is in the construction of sample problems. As explained

in the introduction, most previous systems resort to storing entire

problems which have been supplied by the course instructor. This

technique is wasteful of disk storage and contradictory to ehe princi-

ples of generative CAI.

MALT employs a much more sophisticated as well as interesting

heuristic for generating its problems. Instead of storing a problem

in its entirety, only parts of it are kept. These segments are called

"problem primitives" because they are like basic building blocks which

the system uses to design its problems. They can be thought of as

representing either a first, second, or third sentence of a typical

machine-language programming problem.

Each group of problem primitives is'designed around a different

programming concept. The first such group, herein called "first

problem primitives", typically is concerned with methods of data input

into a user program. This involves only the use of SEDCOM's reader

but the type of input data may vary greatly. A student may be required

to construct a program to do such tasks as reading in a series of

characters and storing them in memory, or reading a series of multi-

digit numbers and forming their numerical value.

The next group, second problem primitives, deals exclusively

with the processing of data which is resident in the computer memory.

This group obviously encompasses a vast number of possible problems and

24
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is therefore the largest group of primitives. The beginning student

will be required to perform trivial processing such as adding or sub-

tracting the contents of two memory registers. More difficult processing

includes program decisions based upon the contents of the accumulator

or link, operations involving large arrays of memory registers, and

the like. Finally, the advanced students will be required to perform

quite complex algorithms such as extracting a particular symbol or

numerical quantity from a table which has been stored in memory.

The third group of problem primitives deal exclusively with various

methods of computer data output. Because of the simplified structure

of SEDUM, this may involve only the operation of a teletype printer.

However, like data input, it may take any one of many possible forms.

The student may be asked to print out such things as his own name, a

particular message, a register address, or the contents of a register.

These operations normally involve quite advanced techniques and provide

the student with excellent practice in many areas of machine-language

programming.

There are presently eight elements of the first problem primitives,

fourteen members of the second group, and ten elements of the third.

Tables 2 through 4 provide a list of current problem primitives. Each

underlined quantity repreoents a parameter (to be discussed below),

which is generated randomly for each problem. To construct a typical

problem for the student, the System selects an element from each group

according to certain constraints and combines them to form a unified,

meaningful problem.

To allow for less difficult problems, each group has one element

called a null problm primitive. These can be generated whenever a
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Table 2.

FIRST PROBLEM PRIMITIVE

1 ) Read in a series of ASCII characters ending in a "*" and store
them starting in location 1111.

2 ) Read In a series of ASCII characters which end with a "X"
and keep a counter of the number of "1"s which occur.

3 ) Assumi a table has been set up starting at location 12.1
consisting of a 1-character symbol followed by a number;
So each entry takes up 4 registers and there will be
la of these entries.

4 ) Read in a series of A-digit numbers and store their value
starting at location 2Q.. The input will end when the
first character of a number is a lir.

5 ) Read in 24. (octal), 2,-digit numbers and store their value
starting at location

6 ) Read in 11 ASCII characters and store them in locations
thru 2.51.

7 ). Null primitive

8 ) Null primitive
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Table 3.

SECOND PROBLEM PRIMITIVES

1 ) Search registers 221 thru L51 for the 1st instruction which
begins with the octal digits "W. (EXAMPLE: 70XX)

2 ) Search registers 115. thru .111 for the lariest number.

3 ) Search registers Igl thru IIAand stop at the 1st register
which contains a.positive number.

4 ) Search registers lik thru 2.3.4 for the octal number "7402".

5 ) Form the absolute value of register ,1Q in the Accumulator.

6 ) Add the contents of register 2.51 to the contents of register

7 ) Subtract the contents -* register lkk from the contents of
register Z.Q.Q.

8 ) Multiply the contents of register 211 by the contents of
register Ma.

9 ) Form the 2's complement of the contents of register la
in the Accumulator.

10 ) Form the sum of registers ILQ. thru In in the Accumulator.

11 ) Compare the contents of registers j and 21k. Place the
smallest in location 25,1 and the lartest in location na.
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Table 3. (Cont.)

12 ) Null primitive

13 ) Search the table for the
corresponding number.
halt the program.

symbol "or and retrieve the
if it is not in the table, then

14 ) Null primitive
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Table 4.

THIRD PROBLEM PRIMITLYEI

1 ) Print out the register number, spaces, and the message,
"POSITIVE".

2 ) Next, deposit this number in location In.

3 ) If this results in a non-zero LINK, stop with the (ACC) -7777,
otherwise stop with the (ACC)=0000.

4 ) Finally, print out the 4-digit contents of the Accumulator.

5 ) Lastly, print out the register where it was found, / spaces,
and the contents of that register.

6 ) Print out the symbol, spaces, and the register number where
it was found.

7 ) For registers 221 thru 2.502, print out the register number,
spaces, and the octal contents of that register.

8 ) Null primitive

9 ) Print out the message, "HELLO,".

10 ) Print out your own name.
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simpler problem dealing with only one concept is desired. A beginner

can then receive an easier problem consisting of for example, only

a processing primitive. Null primitives also effectively increase the

number of possible problems which can be generated because each problem

does not have to consist of three complete primitives. By the selective

inclusion of null primitives, the student feels that he is receiving

a much wider variety of problems although this is not strictly the

case.

Problem Generation Techniques

There are three primary ways in which the system adapts its problem

generation techniques to the user. Although these generation constraints

serve primarily to limit the number of possible problems for a given

student, the end result is a meaningful problem which is consistent

with the user's ability.

The most important constraint heuristic is that of problem plausi-

bility. Each problem must be reasonable in that it requires the student

to perform relevant tasks. To generate a problem which involved con-

tradictory or totally unrela-,ed operations would clearly be undesirable.

Therefore, all problems are generated so that each of the constituent

primitives are logically related and the result is a plausible, meaningful

problem.

The implementation of this heuristic implies that not all combinations

of primitives are possible. Each primitive can be combined only with

a subset of the following primitive group. Such a subset typically

includes only those primitives which would form a valid problem when

combined with the primitive previously selected. For some primitives
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this subset is quite small while for others, notably the null primitives,

it is as large as the entire next group. Within these plausibility

bounds, however, primitive generation is totally random.

A second constraint on generation is the obvious factor of a

student's past performance. It is important that the user receive a

problem which is maximally consistent with his current programming

ability. For this reason, each problem primitive is assigned a pair

of values, (a,$), called a threshold pair. The user's current LEVEL

must fall between these values if this primitive is to be used. If

his LEVEL is outside this interval the primitive would be either

trivially simple or hopelessly difficult and therefore counter-productive

to his learning process.

These threshold pairs are set by the instructor and reflect his

judgement as to the difficulty of the particular problem. They are

easily changed, however, to adapt to differing class abilities. Most

of the simpler problems have a threshold pair of approximately (0,1)

while the more difficult ones have a pair of (1.5, co). This is only

an estimate though, because very few primitives have, equal threshold

pairs (see Table 5). As the student progresses through the material,

the advanced primitives become more likely to be generated and the

easier problems are excluded from possible generation. Each problem

is therefore appropriate to the student's current LEVEL yet varied

enough in difficulty to provide interesting combinations.

A final restriction placed upon generation is intended to avoid

repetitious problems. After an entire problem is constructed, the stu-

dents's past history is consulted to determine if this problem is the

same as one previously solved. If so, the problem is rejected and
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another is generated. Because of the large number of possible problems

available, it is important that ones which are not only identical but

even similar to previous ones be rejected. Therefore, if the second

primitives and either the first or third ones are identical to the

respective primitives of a previous problem, the problem is judged as

being repetitious and discarded. The second primitives are regarded'

by the system as being most important due to their large number and

the fact'that they form the basis of most programming problems.

If, after several attempts, the system does not generate a new

problem for the user, it accepts the current one and informs the user

that it may be similar to a previous one. This saves possible wasted

time in problem generation and eliminates the threat of infinite

loops.'

All of the preceeding techniques are designed to provide the stu-

dent with a wide variety of meaningful problems. In the current system

implementation, there are approximately eighty completely different

problem formats which are possible. There is therefore small chance

of complete problem duplication.

Once an appropriate problem has been constructed there are various

parameters within it which must be included. These include such values

as the address of a memory register, the address of a table, the amount

of input data, a string of output text, etc. There are many of these

parameters and their value will vary with each successive problem

generation. The resulting situation is that although there are roughly

eighty basic problem formats, the number of completely different

problems which are possible approaches infinity. Clearly this illustrates

the power and effectiveness of the problem generation heuristics.
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Problem paraieter generation is subject to only one minor restriction.

The parameters are constrained to fall within certain reasonable inter-

vals of core memory. This insures that parameters will not interfere

with each other or the user's program sequence. If this restriction

did not exist, user programs which were self-modifying might often

result.

When problem and parameter generation is completed the problem
ti

is presented to the student. This often requires small amounts of

sentence modification and generation in order to get a syntactically

correct form. It usually involves only proper agreement between the

sentence verb and modifying preposition so that forms such as: "Sub-
.

tract x by y" do not result. These modifitations are not extensive

but they do illustrate the limits to which sentence generation can

be taken. The next logical step in generative CAI research could

be to construct problems not from sentence primitives as done herein,

but from simple word primitives. The theoretical value of such an

effort would be much greater but so also would be the difficulties

involved. Table 6 provides several examples of typical problems which

might be generated by MALT.

The various heuristics used by the system in problem and parameter

generation are extremely important. They are flexible enough to

provide a wide variety of sample problems and specific enough to tailor

each problem to the present abilities of the student. The technique

of building problems from basic primitive elements eases the program-

ming task of the instructor and allows him to concentrate on other

areas of system design. It also makes the overall system generative

in the broadest sense of the word.
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Table 6.

SAMPLE PROBLEMS

1 ) Read in a series of ASCII characters ending in a "X" and
keep a counter of the number of "A"s which occur.

2 ) Form the sum of registers 242 tiru 262 in the Accumulator.
If this results in a non-zero LINK, stop with the (ACC)=7777,

otherwise stop with the (ACC)a0000.

3 ) Read in 10(octal) ASCII characters and store them in
registers 260 thru 270.

For registers 260 thru.270, print out the register number,
1 space, and the contents of that register.

4 ) Read in 24(octal), 3-digit numbers and store their value
starting in register 300.

Search registers 300 thru 324 and stop at the 1st register
with-a zero number in it.

Print out the register number, 2 spaces, and the message "ZERO".

5 ) Form the absolute value of register 272 in the Accumulator.
Finally, pript out the 4-digit contents of the Accumulatcr.

6 ) Print out the message "Hl THERE".

t -
7 ) Search registers 212 thru 230 for the largest number.

Next, deposit this number in register 310.



A valuable by-product of problem generation is that the solution

to the programming problem is implicitly provided to the system. She

system is informed of the sequence of problem primitives and parameters

selected. This knowledge is used both to construct a logic diagram

of sub-tasks and to monitor (and generate in part) the solution

progra,- This process is explained in the next section.

Concept Sequence

The final task of the Problem Generat'on'is to construct the

Concept Sequence. This variable (called SEQ) is a character string

consisting of a series of digits which represents the sequence in which

the Concept Routines must be called in order to design a solution

program. In general, every pair of digits represents the number of a

different Concept Routine. Each Routine is .assigned an aribtrary

integer whose value falls in the range (1,35). A sequence of such

numbers is assigned to each possible problem primitive by the course

author which reflects the basic logical flow of an appropriate sol-

ution program. The Concept Sequence for the complete problem is then

-merely the concatenation of the sequence of each respective problem

primitive.

To clarify this point,. assume that a sample problem consists of

primitives 3, 10, and 5. The Concept Sequences for these primitives

are, respectively:

12324 /

123240503

and 1323433 1

This implies that the solution program for the first primitive can be

designed by successively calling concepts 23 and 24. The program for



37

the other primitives can be implemented in a similar manner. The

Concept Sequence for the entire problem is therefore found by com-

bining the sequence for each primitive yielding:

'2324...3433

The final element in each respective sequence is a null symbol which

is used to indicate to the Control Unit that the end .of a program

segment has been reached. The end of the entire program is indicated

by two adjacent null symbols in the sequence.

Almost all Concept Routines require only two digits in the

Concept Sequence for their respective number assignment. However,

it is sometimes necessary that additional parameters be passed in

this string. As an example, the Concept Routine which teaches program

branches must have available to it the destination of any such jump.

Therefore, the two digits following its own code (which happens to be

26) represent the number of the Concept Routine to which the jump

is to be directed. A SEQ value of '2603...' indicates that the

Concept Routine should insert an instruction in the program to "JKP"

to the beginning of concept number 3.

This technique of constructing a complete Concept Sequence from

similar sequences for each primitive has proven to be quite effective.

It is a highly compact method for representing the entire logical

flow of a solution program. It also allows a wider variety of problems

to be generated because each primitive is treated as a problem in it-

self. Since there is no logical overlap between such primitives, there

is a larger number yr combinations which can be made than if this

method were not used.



Logic Generation

Another important generative facility in the system is its

ability to extract the program logic from any given sample problem.

This ability provides a structure within which student and system

can operate effectively. It allows the student to visualize the

basic flow of his program and eliminates much initial confusion and

error. Also, the system requires that certain ground rules be estab-

lished before a user designs his program. If no such restrictions

were made, the system would, in effect, have to "understand" the

user's program regardless of how he designed it. This is clearly an

interesting but recursively unsolvable problem. For, if the system

monitor could "understand", in some meaningful way, any program which

was supplied to it, it could also interpret one which was a little

more complex than itself.

This reasoning leads one to the obvious conclusion that since

such a situation is unattainable, there must be some limits as to

how the user may develop his program. It was decided that the best

alternative was to show the student a flow chart of his problem and

allow him to develop the program within the framework of this logic.

Early results seem to indicate that students do not feel restricted

by this method. In fact, they usually insist that it helps them

greatly in learning machine-language programming because it aids

them in structuring their program.

The Logic Generator is used after a problem has been presented

and prior to the programming of any one of its primitives. It is

also entered from the Control Unit after the programming of each
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primitive to produce the logic for the following primitive. This

allows each primitive to be totally independent from any other one

and spares the student from long waits while large numbers of sub-

tasks are printed out.

The function of the Logic Generator is fairly straightforward.

It must scan the Concept Sequence and generate a list of logical

sub-tasks for each concept in the string. The problem is more complex

than this however, because many concepts require a variable number of

sub-tasks depending on certain conditions. For instance, the concept

which teaches the student how to input a series of numbers must be

aware of whether there are a fixed or variable amount of these numbers.

The list of sub-task; generated for the latter case will be longer

because various operations must be performed in the student's program

to determine if the end of the input has been reached.

Even those sub-tasks which are similar for each problem will

not be strictly identical. This situation implies that the Logic

Generator is far more than a text buffer and printing routine. It

must analyze both the parameters present and the Concept Sequence to

determine the proper list of sub-tasks.

There is also a second complicating factor, in this process. It

is often necessary that a particular sub-task make reference to

another one somewhere else in the list. For instance, the sentence

"Jump down to sub-task 7" might occur as part of the logic for a

particular primitive. The Logic Generator only knows,however, the

relative point in the program to which this jump is directed. It

does not know the exact number of the sub-task corresponding to that

part of the program. It therefore must have a method of determining



the exact number of sub-tasks which are required for each element in

the Concept Sequence. This will allow other parts of the program to

be referenced by their appropriate sub-task number. As a result,

each sub-task is made more specific and the entire list is much more

coherent to the student.

This is accomplished in a manner analagous to a 2-pass assembler.

The Concept Sequence is first scanned and a record is maintained of

the beginning sub-task of every concept. A counter is incremented

by the correct number of sub-tasks required for each concept. The

result is stored in an array, Begin, as in the following example.

Let the Concept Sequence for a program segment be '08101107 '.

The solution program can thus be written by calling concepts 8, 10,

11 and 7 in proper'order. _Now, let us assume that these concepts

require 3, 1, 4, and 2 sub- tasks, respectively, to implement them.

From this information we can determine the number of the particular

sub-task which represents the start of any concept. In this case we

have:

Begin (8) w 1
Begin (10) is 4

Begin (11) st 5

Begin (7) at 9

In subsequent iogic generation, any sub-task may therefore

refer to any other concept in the sequence merely by consulting the

proper element in the Begin array.

The actual generation of the sub-tasks is performed next. The

control program for the Logic Generator initializes a scanner to the

beginning of the sequence string and sets a sub-task counter to one.

Each concept number is then extracted and the proper list of sub-tasks



generated for it. Upon return to the control program, the sub-task

counter and scanner have been updated to reflect this operation.

In the previous example, the sub-tasks for concept 8 would be

generated first. The scanner would next be set at the second element

of the sequence, "10", the sub-task counter would be incremented to

4, and processing would continue. The scanner is not advanced in the

control program because each concept is not always represented by

exactly two digits in the Concept Sequence.

When the first null symbol is reached in the string, the

entire primitive has been reduced to a series of sub-tasks and

control is returned to the system Control Unit. Figure 3 provides an

example of a typical sub -task generation. Normally, the student would

design his program for each primitive individually so he would not

receive the sub-tasks forall primitives at the same time.

The techniques inherent in the system's problem and logic

generation phases appear to be quite universal in application. They

are, in general, not restricted to operation within the framework of

the current system but instead are applicable to other areas of gen.7.

erative CAI research. The principle of constructing sample problems

from smaller elements and adapting each problem to the ability of

the student is basic to the tenets of generative CAI research,

Now that the techniques for problem generation are understood,

it is important that the operation of the system Control Unit be

considered. The next chapter provides a discussion of this relatively

small but important component.
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Figure 3.

EXAMPLE OF PROGRAM

SUB-TASK GENERTION

YOUR PROBLEM IS TO WRITE A PROGRAM WHICH WILL:

Read in 20 (octal) ASCII characters and store them in registers
240 thru 260.

Form the absolute value of the contents of register 240 in the
Accumulator.

Finally, print out the 4-digit contents of the Accumulator.

Here are the sub-tasks for the 1st line
1 ) Initialize a ptr to register 240.
2 ) Initialize a ctr with the value of -20 (octal).
3 ) Read a character.
4 ) Store it away using the ptr.
5 ) Update the ptr.
6 ) Update the ctr and if it's not zero, jump back to start of igop.

Here are the sub-tasks for the 2nd line
1 ) Bring the number in register 240 to the Accumulator.
2 ) Check the sign of the ACC and if it's negative, then form

it's 2's complement.

Here are the sub-tasks for the 3rd line
1 ) Store the contents of the'Accumulator temporarily.
2- ) Set up a subroutine which will print a character.
3 ) Get the number to be printed and rotate it so the 1st (or

leftmost) octal digit is on the right.
4 ) Mask out the left 9 bas, add 260, and call the print

subroutine.
5 ) Do the same for the 2nd digit.
6 ) Do the same for the 3rd digit.
7 ) Get the number, mask it, add 260, and print it.



IV. CONTROL UNIT

The heart of the MALT system is a 4-page Control Unit stored

under the name MAINZ. This component functions much the same as an

operating system and is the only program which is always active in

CPS core. It has access to all relevant information concerning the

student and the current sample problem. It is designed to act as a

system co-ordinator in that it sequences the student through the

proper presentation of course material. A flow chart of the Control

Unit is given in Figure 4.

The Control Unit has been designed to be as universally appli-

cable as possible. That is, it is totally independent in the sense

that it constantly monitors the status of the user's program regardless

of the type or structure of that pror:am. At any given time, the

control unit is cognizant of all relevant user program parameters. In

this respect, it functions not merely as a control program, but also

as an "intelligent" programming monitor.

The most important aspect of the Control Unit is the way in which

it records the various parameters of the user's program. There are

two basic types of parameters: those which are necessary for all

programs (universal parameters), and those whose existence depends

only upon the current student program (program-dependent parameters).

Universal Program Parameters

After determining the user's name and securing his perf,rmance

records, the Control Unit requests a sample problem from the problem
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generator. In doing so, it makes available all relevant parameters

which might be useful to the generation algorithm. When control is

.returned, all parameters which the student will need in constructing

his program --z initialized. There are several of these which deserve

special consideration.

The entire memory of SEDCOM is represented as a 377 element array,

each element being a character string of length 4. This array is

originally initialized to "0000" to insure that no previous programs

cause errors in the current program. Since SEDCOM and CPS operate

only in octal and decimal modes, respectively, all memory registers

numbered with non-octal digits (such as registers 028 and 039) are

ignored by the system.

As the 'student designs his program the location of the register

which will hold the next sequential instruction is indicated by a

variable called PC (Program Counter). For the sake of simplicity

and to avoid possible overlaps with other storage locations, the

program counter is initialized so that all user programs will begin

in register "000". This variable is continually updated to insure

,proper instruction placement.

During the course of program development the student will

usually require that numerical constants be stored in memory for

later access by his program. These constants are placed by the

system sequentially beginning in register 377 and extending downwards-

in memory as far as necessary. The current location of the end of

this list is indicated by a variable called LIT (for LITeral pointer).

As each new constant is needed, it is placed in memory at the end of

the list and the LIT is decremented by one.
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The technique of forcing placement of program constants at the

top of memory was chosen for several reasons. The middle areas of

memory (registers 150 through 350) are often reserved for lists and

tables to be used by the student's program. To allow placement of

the constants within the possible range of these lists would neces-

sitate considerable alteration in memory allocation algorithms. Also,

to allow the user to specify their location would introduce much

needless dialogue. Finally, the arbitrary placement of constants in

a program is basically irrelevant to the machine-language learning

process. 1

Program-Dependent Parameters

The primary function performed by the Control Unit is to deter-

mine, at all times, the current status of the student's program. Since

the system must be able to guide the student through his program

development, it clearly must have a detailed record of every relevant

program parameter. Some typical parameters which the system would

need are the location of any pointers and counters, location and status

of any program loops, the status of the accumulator, the location of

any registers used for temporary storage, and the location of any

unresolved forward jumps. This information does not directly affect

the flow of the program but must nonetheless be available to the

system to enable it to successfully monitor the student's program

development.

A. Loop Pointers and Counters

The locations of pointers and counters are represented by the

respective variables, PTR and CTR. These variables will exist whenever



there are loops within the student's program. In general, only one

such loop will be active at any given time so that a series of nested

loops rarely occurs.

These variables are placed along with numerical constants at

the top of memory. Anytime a program necessitates the non-concurrent

use of more than one loop, these same PRT and CTR registers are re-

used as a method of instilling proper programming habits in the user.

The existence of a program loop is assumed by the system when-

ever a pointer or counter is initialized. The physical start of the

loop is deemed to be the first memory register after this initial-

ization process. By monitoring the beginning of a loop in this

manner, the system can easily determine if the student correctly

designs his end -of- loop decision sequence. The most common program-

ming mistake of this kind occurs when the student attempts to jump

back to the initialization sequence instead of the main body of the

loop.

B. Temporary Storage Registers

During the construction of most programs, it is often necessary

that some variables be given temporary storage in memory. The

physical location of these parameters is usually invariant for the

duration of the given program. However, their location is program-

dependent so measures must be taken to record their location in any

given program.

To implement this storage in MALT, an array of temporary locations

(TENLOC) was created. Each element of this array represents the storage

locationda particular variable. This variable is stored temporarily, and



its location in memory is recorded in the TEMLOC array. Henceforth,

all Concept Routines which require access to the variable need only

refer to the proper array element. If any array element is empty,

then the corresponding variable is either not relevant to the current

program or has not been created as yet. Each concept routine can then

revise its presentation to account for this situation. Table 7 is a

list of all temporary parameter locations which are recorded by the

system.

C. Accumulator Status

In machine-language programming, probably the most common source

of error for the beginner involves the manipulation and current status

of the accumulator. Since SEDCOM possesses neither a non-destructive

deposit nor a destructive load instruction, the student and the system

must constantly be aware of the present contents of the accumulator.

For instance, if the accumulator is to be loaded with a given number,

it first must be cleared of any-previous contents. Likewise, a number

which is to be used immediately and also saved for future use must be

returned to the accumulator since the act of_depositing it into memory

destroys the accumulator's contents.

The contents of the Accumulator can be represented in two

important ways. These two representations may often differ depending

on the prior actions of the program. As an illustration consider the

following program segment:
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At the highest interaction range the system performs less like

a tutor and more like a general programming monitor. It does not

demand that the student design his program in any particular manner

besides adhering to the original sub-tasks. It asks very few questions

and gives only a small number of hints and suggestions. The student

is basically left on his-own to see how well he can perform. He is

informed if part of his program is in error but otherwise, the system

does not require him to follow a particular program format. A sample

list of concepts and interaction ranges is provided in the third

column of Table 8.

A concrete example may help to illustrate these interaction ranges.

The Concept Routine which teaches initialization of counters is divided

into three such degrees of interaction. At the lowest range the

student is told what the value should be which will be used to

initialize the counter. A student in the second range will be told

which values are possible but no'. which one he should use. At the

highest plateau the student is provided with no suggestions whatsoever,

(Pia. 6).
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Instruction Comment

010 TAD 100 /Add registers 100 and

011 TAD 200 /200

012 SZA /Is the result zero?

013 JMP 16 /No

014 TAD 100 /Yes, ADD register 100.

015 DCA 200' /Deposit and Clear
Accumulator

016 /What is the accumulator
here?- at the start
of Concept j.

It is evident that the Accumulator may contain two different

numbers when the program reaches register 16. If the comparison at

register 12 produced a zero result, the instructions in registers 14

and 15 would be executed. The Accumulator would then contain zero

upon reaching register 16. However, if the comparison yielded a non-

zero result, register 13 would cause a direct jump to the end of the

program segment. In this case the Accumulator would contain a number

which may or may not be important to the program. Clearly, the system

must have two different representations of the Accumulator status.

before the.current instruction for register 16 can be determined.

To implement these ideas, two variables called ACC and ACCUM are

used. ACC .s a single variable which represents the state of the

Accumulator assuming that the program sequence was executed sequentially

with no jumps. ACCUM is a 35-element array representing the Accumula-

tor contents at the start of each Concept Rovtine.

If ACC = i the Accumulator would currently be in state i were

the program to follow a sequential path. The variable i can assume



one of the following values:

0 - representing an empty Accumulator,

1 - denoting valid numerical contents, or

2 - indicating a number which has no value to the current program.

Similarly, ACCUM indicates the Accumulator status at any specified

point in the program. If ACCUM(j) = i then the Accumulator will be

in state i when the program enters Concept Routine j.

In the example given above, the Accumulator contents would be

zero at register 16 if the program was executed sequentially so ACC

would therefore equal 0. However, the contents would be non-zero if

this point in the program was reached by the jump in register 13 so

ACCUM (j) would be set to either 1 or 2 depending upon the significance

of these contents. The sequence of instructions beginning in register

16 would therefore have to reflect both possible states of the

Accumulator in order to ivoid simple but important errors in the final

program results.

This Accumulator information is important to all Concept

Routines because it determines whether certain program actions will

be necessary such as clearing the Accumulator or retrieving a stored

number for further processing. All Concept Routines expect he

Accumulator to be in a particular state upon entry to the routine and

if this is not the case, then instructions must be inserted in the

program to bring it to this state. Both Accumulator variables are used

to make this determination.

At the conclusion of any Concept Routine, the sariables ACC and

ACCUM are adjusted to reflect the program actions which occurred

within the routine. This may involve setting the ACCUM array to
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reflect conditions at a location which has not been reached yt.t. In

our example, this would be done when the instruction in register 13

was inserted. The Concept Routine which was active at this time

would note that the Accumulator would not be cleared when register

16 was reached and would therefore set the corresponding element of

the ACCUM array to indicate this.

Program Jumps

Although the student designs his solution program sequentially,

he must constantly be aware of logical branching within the program.

It is often the case that a forward jump must be made to a yet unknown

destination in the program. Clearly the Control Unit must maintain

records of all such unresolved forward jumps. To accomplish this,

all system components have access to an array variable, JMPLOC, defined

as follows;

If JMPLOC(j) = k, there exists an unresolved jump in register k

which should be resolved when concept j is entered. The Register k

should then be filled in as a jump to the first register of concept j.

To determine whether concept j has been reached yet, the Control Unit

maintains another array, START, such that if

START(j) = m

then the segment of the student's program representing concept j began

in memory register m.

To illustrate, consider the following program:

Assume that the Concept Sequence is '232416...'

This will give uSe to a program such as the following:
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Memory Number of the Concept which is
Location represented by the program segment

10

Concept #23

20

21

Concept #24

27

30

Concept #16

45

46 77.

From this example we see that concept 23 starts in register 10, concept

24 in register 21, etc. The START array would therefore contain the

following values:

START(23) = 10

START(24) = 21

START(16) = 30

Now, if the instruction in register 46 should be a "JMP" to concept 10,

it could not be coded at this time because concept 10 has not yet been

reached in the program. Instead, the 10th element of the JMPLOC array

would be set to, 46 to indicate this condition. Later, when concept 10

was reached, this instruction could easily be inserted into the program.



These two arrays provide the system with the ability to inter-

connect various concepts much the same as a complex assembler or

loader resulves external global references in a group of programs.

It also is clearly illustrative of the fact that the Control Unit

is keenly aware of all characteristics and parameters within the

user's program.

The Control Unit guides the student through an orderly presenta-

tion of the material until the Concept Sequence, SEQ, has been reduced

to a null indicator. At this time, the system must re-initialize many

of its parameters and deal with any existing unresolved program jumps.

If the entire program has not been written, the next portion of SEQ is

used to generate a list of sub-tasks and the student continues to design

his program. If, however, two contiguous null iriicators are en-

countered in SEQ, the program is complete. The system will then

generate a complete listing of the student's program for his future

reference and begin its evaluation of the student's performance. Most

of the student's records will be updated to include the current

problem and he will be asked if he desires to continue operation. This

process continues until the user indicates that he wishes to terminate

operation in which case his performance on the entire series of

problems is evaluated and entered into his permanent file.

It should be evident that while performing numerous clerical

functions, the Control Unit also is responsible for a relatively

complex analysis of the user's program. At any given point in the

development of the program the Control Unit is aware of its exact

nature and structure. As each concept is called and the program is

expanded this knowledge must be constantly updated and revised to
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reflect the immediate parameter conditions. It is for these reasons

that the system Control Unit is a very general and useful CAI

programming monitor.

Now that the operation of the overall system is cleat, it is

imperative that one consider how each respective programming concept

is taught. Chapter five considers this topic and provides a discussion

of the system's Concept Routines.



concepts such as table searching or input and manipulation of numbers

require quite large programs to implement them. Smaller concepts such

as Accumulator or Link manipulations can be taught quite simply.

Each Concept Routine is responsible for the design of a particular

segment of the final user program. It therefore must have available

to it all parameters in the program which are relevant to that segment.

There is a kernel set of program parameters which are passed to every

Concept Routine. This set includes the present memory configuration

(MEM), the program counter (PC), the literal pointer (LIT), the concept

sequence (SEQ), and the user's current LEVEL. Other parameters are

available as they are needed in particular Concept Routines.

There are three distinct phases_ in the operation of every Concept

Routine. Though these phases vary greatly in size and complexity, it

is important that each be treated as a separate entity. The three

portions of every Concept Routine are a generation phase, a teaching

phase, and a remedial phase. Figure 5 indicates the'basic flow of

any Concept Routine.
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possibilities. When the system finally decides that the response

supplied by the student is in error, it informs him as to the reason

for this decision and supplies the best program alternative.

If the student's response matches any of those which the system

generated then it is accepted by the system as a valid program

instruction. Since this was not the expected result however, several

program parameters may have to be altered to adjust to this co.nlition.

A trivial example of such a case occurs in the initialization of

a counter. If a program loop is to be executed N times, then either

the value of N or -N must be stored in memory. If the student chooses

to use N as a counter value, he must form its 2's complement before

he deposits it into the counter register. The system must make note

of the method he chooses because if another counter is required later

in the program, this same method of initialization must be used.

Despite the simplicity of this example, the principle in operation

is important. Figure 7 gives a representation of the first method of

program verification as used by the system.

Program Simulation-
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Generation Phase

The generation of a program segment means that the system com-

pletely designs and writes the program for the user. Since each

Routine has this capability, the system's generative facilities are

quite flexible.

The generation phase is entered only if certain conditions are

present. The reasons for this are basic to the design of MALT. The

system should obviously refrain from generating the entire solution

program because the student would derive minimal benefit under these

conditions. Likewise, the student should not have to write every

portion of his program because many of the concepts involved may be

quite trivial to him. The system therefore sets a particular generation

threshold value for each Concept Routine. If the student's current

LEVEL is above this value, the system generates a solution program

segment for him. If his LEVEL falls below the threshold the system

performs no generative function whatsoever and the student must design

the entire program segment with only system assistance.

The numerical value of this threshold varies greatly with the

difficulty of the concept involved. Quite easy topics such as

transferring a number between the Accumulator and Memory may be

system-generated at a LEVEL of 1. Others, such as table searching

or list manipulation, are generated only at a LEVEL of 2.5. The

result is that as a student progresses through the material, topics

which he his previously mastered are performed by the system. He is

responsible only_for concepts which are commensurate with his current

achievement level. Table 8 provides a sample of some Concept Routines
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and their corresponding generation threshold. The third column

of the table will be discussed later.

The generation threshold value of many Concept Routines can be

extended in certain cases. A situation might arise in which a student

has reached a particular level and has not yet been exposed to certain

concepts which are usually encountered at lower levels. Although these

concepts will probably prove fairly basic to him, he should nonetheless

be given the chance to try them. Therefore, if a student's LEVEL

.places him into the generation phase of any concept which he has

not yet encountered, he is often required to write the program for

this-concept himself. The system thereby virtually eliminates the

possibility that a student may progress through the-entire instructional

sequence and never be exposed to certain basic programming concepts.

The generation phase of a Concept Routine does-not consist of

specific programs designed by the instructor. He provides.only

algorithms which the system can use to design its own programs. This

is because user program parameters often vary and the programs which

are generated must reflect these differences. The system must be able

to design a correct program regardless of the initial contents of the

Accumulator, the location of pointers or counters, etc. As the status

of the user program changes, so upo must the generation phase be able

to alter its solution program to indicate these changes.

An important consideration in the automatic generation of a user's

program isthat of efficiency. Certainly the course instructor is

capable to providing the system with complex algorithms which would

produce programs that are maximally efficient. However, if these

programs cannot be understood and followed by the average student,
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Table 8.

SAMPLE CONCEPT ROUTINES,

GENERATION THRESHOLD, AND

VALUE OF STUDENT'S

INTERACTION RANGES

FUNCTION AND NAME GENERATION "LEVEL" WITHIN EACH
OF CONCEPT ROUTINE THRESHOLD ililERAMMIL

Use of pointers (PTR) 1.5 (0,.8),(.8,1),(1,1.5)

Use of counters (CTR) 1.5 (0,.8),(.8,1),(1,1.5)

"Masking" operations (mask) 1.5 (0,1),(1,1.5)

Textual output (TEXT) 1.7 (0,.5),(.5,1),(1,1.7)

Manipulation of LINK (oflow) 2.0 (0,.8),(.8,2)

Loop operations (lend) 2.0 (0,1),(1,2)

Output of numbers (preg) 2.5 (0,2),(2,2.5)

General input/output (read) 2.5 (0,1),(1,2.5)

Numerical comparisons (large) 2.5 (0,2)e(2,2.5)
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their instructional value is certainly lost. The system therefore

must reach a reasonable trade-off between these two characteristics

if it is to provide the student with the most possible benefits.

The present system appears to be quite effective in this respect.

All programs generated by the system are as concise as can be.expected.

Still, the programs do not use any highly sophisticated techniques

such as extensive microprogramming, self-modifyifig-programs, or

recursive subroutines. These methods would only serve to confuse

a beginning student.

During the course of any program generation it may be necessary

to call otherConcept Routines to function as sub-concepts. A routine

designed to teach.simple textual output may want to use one which

deals only with the operation of the printer; for example, Such

concept interactions are common and cause no problems because if the

highest level concept is being generated by the system, clearly any

lower level ones would also be generated. These more basic concepts

would usually be easy enough for the student that he would become

-quite bored if required to program them completely.

As each sub-task is generated by the system the resulting

program is shown to the student. This allows him to monitor the

construction of his program and note its logical flow.

In most Concept Routines, program generation is accomplished fairly

quickly. It often appears to take longer than it actually does,

however, due to the lack of dialogue. Nevertheless, the current

wait time is about ten seconds, a tolerable interval when one considers

the amount of system activity which occurs during this time.

The program generation facilities of the system have heretofore
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proven to be successful. Some students tend to impatient during

generation but their boredom at being required to perform trivial

programming tasks would probably be greater. The only difficulty

encountered to date is that a problem is sometimes generated which is

difficult in nature but can be broken down into a sequence of fairly

basic sub-tasks. The student may then be faced with a situation in

which the entire program is generated by the system even though his

LEVEL is less than the maximum value of 2.5. This occurrence is

obviously undesirable but can be remedied only by severely restricting

the powers of the problem generator. It is therefore accepted as an

unfortunate by-product of the system design,

Teaching Phase

All programming instruction which the student receives occurs

during the teaching phase,of a Concept Routine. This phase is

entered whenever the student's LEVEL is less than the generation

threshold value. This means that the concept will be difficult enough

so as not to seem trivial to the student. In it, the student designs

his own solution program under the guidance of the system.

Within the teaching phase of any Concept Routine there exists

a variable number, usually two, of degrees of interaction. The

student's LEVEL determines the amount of questioning and dialogue

which the system initiates. At the lowest interaction range the

system will guide the student through every step in the construction

of his program. His program is required to be very similar to the

system's solution prOgram.
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Figure 6.

EXAMPLE OF SYSTEM INTERACTION

AT VARIOUS "LEVELS"

0 < LEVEL < .8

Since we may need a ctr later, we will store the ctr value in
memory and move it into a register which we will use as the
actual ctr.
Use M377 to store the ctr value and M376 as the ctr.
You should use "7760" (the 2's complement of "0020") as the ctr value
M377:
/760
First, get the ctr value:
M001:
1377
And deposit it into the ctr:
M002:
1576

.8 < LEVEL < 1

Use either "7760" or "0020" as the ctr value.
Use M377 to store the ctr value and M376 as the ctr.
M377:
Q020
First, get the ctr value:
M001:
1377
Now, form it's 2's complement:
M002:
/041
And deposit it into the ctr:
M003:
1316

A_K____LEVEL < 1.5

Use M377 to store the ctr value and M376 as the ctr.
M377:
/760
M001:
1377
M002:
1376
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user and tends to strengthen the possibility that they will occur

again.

The MALT system was designed around the philosophy that program

inefficiencies are to be allowed but always pointed out to the

student. The reason for the inefficiency of the particular instruction

involved is to be explained and a better alternative provided. However,

errors which disrupt the logical flow of the program are never to be

allowed. To do so would make the final results totally invalid and

would teach the student virtually nothing about correct programming.

As each logical error in the program is typed by the student, the

system explains why it is inappropriate to the current process. It

also gives the current instruction and usually inserts it into the

program.

There are certain instances, however, in which the correct

instruction is-not inserted into the program by the system. Early

results from the student's use of the system seem to indicate that

the primary cause of programming error involves use of the Accumulator.

Students tend to disregard the current status of the Accumulator

when formulatlag their program. The obvious result is that this

register often contains a number when it should be cleared or vice

versa. Since this type of error is so important to the final results,

the system requires the student to correct the program himself. For

example, if a student neglects to issue an "CLA" instruction (CLear

the Accumulator) when one is absolutely necessary, the system requires

him to do so regardless of his current LEVEL. This technique forces

him to focus his attention on the instruction and its use in the

current program. It also prevents a common mistake from being overlooked



and developing into an undesirable programming habit.

During the teaching of any large concept it is often necessary,

as it was in the generation phase, to use other smaller sub-concepts.

There is a marked difference in the treatment of these sub-concepts,

however, because of a sub-concept called from the teaching phase of

a Concept Routine may or- ay not enter its own generation phase. That

is, even though the sub-concept is obviously more basic than the concept

which called it, it may still be difficult enough so-that the student

is required to program it. The system can thereby adapt very closely

to the student's needs because even though he may be faced with a

very difficult programming concept, various portions of it can be

generated for him by the system. He is free to focus his attention on

the more challenging segments of his program.

Every response which the student makes-during the teaching phase_

is ultimately reflected in his LEVEL. He is usually penalized a signi-

ficant amount for errors in a particular concept while being rewarded

a lesser amount for correct responses in the same concept. The result

is that the student's LEVEL tends to converge quickly to a value which

very nearly reflects his current programming ability.

Whenever an incorrect response is typed by the studentv the system

temporarily exits from the teaching phase of the active Concept Routine.

It enters the remedial phase in which the student is provided with an

explanation as to the reason for his error and a possible correct

solution. The system will subsequently re-enter the teaching phase

to finish guiding the student through his.solution program.



Remedial Phase

The final portion of ifiy Concept Routine has the responsibility

of generating remedial statements to indicate to the student the

reason that his program is in error. These remedials usually include

an explanation of the error and a description of the steps necessary

to correct it.

The remedials given by the system are rarely pre-determined by

the instructor. They are usually simple sentence formats from which

an appropriate response can be constructed. A wide variety of possible

student errors are therefore, handled effectively by only a few statement

formats with no loss of remedial ability.

The system usually provides the correct program statement in

both machine and assembly language formats. The conversion from one

format to the other is trivial for the system and shows the student

whether his error was a logical or merely a syntactic one. It also

helps him to develop the habit of formulating his solution program first

in assembly-language which tends to minimize purely s ntactic errors.

Remedial statements of more than one sentence are sometimes gen-

erated semi-randomly according to a particular function. The same

user mistake will often result in the generation of two different

remedials by the system. The student may therefore possibly receive

either a basicor a complete explanation as to the cause of his error,
4

The functicn which determines this is heavily weighted so that complete

remedials are more likely to occur if the student's LEVEL is relatively

low than if it is high. This helps-to insure not only that errors

are fully explained and understood by the student, but also that rem.-

edials are consistent wAthphis present ability.
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The three phases of a Concept Routine are designed to maximize the

flexibility of the system. Each phase has a particular function which

varies somewhat according to the student's past performance. The

inclusion of three such phases into every Concept Routine allows the

system to perform effectively for all students regardless of their

abilities. Appenekx B illustrates the use of the teaching and

remedial phases during the programming of a simple concept.

The system also has the ability to simulate execution of the

user's program if it feels this process will be beneficial to the

student. Chapter 6 discusses the method by which this is accomplished.
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VI. PROGRAM VERIFICATION AND SIMULATION

There are two important techniques used by the MALT system to

judge the correctness of a student's program. The most common method

is to analyze in detail each segment of the program as it is typed in

to determine if it performs the required functions. This is done on

an instruction-by-instruction basis so that there is immediate feed-

back to the student. In the rare cases where this method is not

feasible, the program can be simulated and the results of this slim -

lation analyzed by the system. This method involves much system \'

activity and will be considered in detail. In either case, the

system has virtually total ability to recognize logical errors in the

user's program.

Immediate Program Verification

The first technique of program verification requires that the

system be thoroughly familiar with virtually all aspects of the current

program. Only if it is aware of the status of all program parameters

can it effectively judge the merits of any program segment which the

student might design. It also must be able to determine not only if

the response is the best possible one, but also if there exists

other alternative responses which also_are acceptable.

As the student formulates each response, the system also gen-

erates what it considers to be an appropriate answer. If the two do

not match,the system must determine if other responses are possible.

If so, the student's answer is compared with all such reasonable
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many possible solutions, each as valid as the next, that to force the

student to use any particular one would deprive him of much of his

programming freedom. It would also clearly be counter-productive

and contradictory to the original aims of this research.

It was decided, therefore, that program execution used sparingly

was the best alternative. This method sharply decreases the amount

of correcting ability in the system but provides the student with
.

greater freedom in his program construction. The trade-off is very

worthwhile in the cases in which it is used beCause to provide the

system with full program-monitoring abilities would be prohibitive

in terms of time and disk storage. Since the system is concerned

only witk the final results of the program and not each intermediate

step, the student is free to design his program using virtually any

method he feels is effective.

The limited execution of a user's program provides other

advantages also. Most students learn basic programming by turning in
.

a set of cards at their computer center and returning later for the-

output. The intermediate results and actions of the program are

unknown to them. By actually observing their-program in execution

they gain insight into both its logical structure and the nature of

any errors which might be present. There are only 5 concepts foi

which simulation is used. These include the following:

1. Manipulation of the Link register

2. Comparison of register contents

3. Movement of numbers within memory

4. Decisions based upon the Accumulator sign bit

5. Decisions based upon the absolute magnitude of the
Accumulator
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Despite the apparert simularities between the MALT system and

previous ones in this respect, there is a fundamental difference.

In MALT, the student is not expected to judge the correctness of his

own program. The system analyzes the program both before and after

simulation in order to isolate any possible errors. This procedure

guarantees that the final program will be totally correct in its

logical structure.

The actual operation of program verification is very similar

to the-process a student follows when he de -bugs his program on a

step-by-step basis. The primary difference is that the system makes

evaluative decisions concerning the program while this responsibility

is usually left up to the programmer. That portion of the system which

makes these decisions is called the Program Verifier.

Before any simulation is attempted, the-current status of the

user's program must be saved. This is important because it eliminates

the possibility that the execution of a new program segment may modify -

or destroy other portions of the program. Next, the operation which

the program segment is supposed to perforth is determined by a numerical

code which is passed to the Verifier. Each such code is unique and

determines the proper state of the machine before and, after execution.

After the intent of the program segment is established; all condi-

tions of the machine which might possibly affect final program results

are determined. This is absolutely essential because the user's

program must be tested under all possible machine states. To do

otherwise would make the systtn's judgements pure guess-work.

These initial conditions set by the system are determined by the

characteristics of the program segment itself. For example, if the
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program is intended to perform a particular operation depending upon

the states of the Link register, then only"two initial states are

necessary. The program is tested with a zero Link and again later

with a non-zero one. Since the flow of the program depends solely on

these two conditions, to test it under other initial states would be

superfluous.

The duties of the Verifier are temporarily suspended upon deter-

mining each initial machine condition. The SEDCOM Simulator is then

called in order to execute the program. This simulation is also sub-

ject to certain constraints and will be discussed below.

When the Verifier regains control of the system, several deter-

minations must be made. It is quite possible that program execution

was not terminated normally. Abnormal conditions which would cause

simulation to cease are such-things -as infinite loops, undefined

instructions, or incorrect program branches. These conditions must

be corrected immediately before any other analysis of the program is

initiated. Therefore, the student is given the opportunity to correct

his program, the current set of initial conditions are re-established,
.

and simulation is attempted again.

If normal program termination occurred, the system must proceed

to analyze the results to determine their validity. This is accomplished

by implementing the concepts derived in Manna's research [7]. For

each initial machine state, .(x), the user's program must perform

particular function, z = f(7). If this function is performed correctly,

the corresponding output predicate, *(1,z) will be true. If t' .s is

the case, the program is judged to be correct for the given initial

states.
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The determination of the appropriate output predicate is not

trivial. Many terminal conditions must be checked such as the contents

of any memory register, the status of the Accumulator and Link and the

location where the program halted execution. Each of these parameters

must also be analyzed in relation to other such parameters. For

example, it may not be enough that a given register holds a particular

value. This value might have to be compared in some way with the

contents of another register involved in the program. A flow chart

Illustrating operation of the Program Verifier is given in Figure 8.

If any particular terminal condition indicates that the userb

program did not perform its function correctly, the system attempts

remedial action. Since it is aware of the exact results which should

have been obtained, it can provide a concise description of the error,

It cannot however, by its very nature, isolate the location of the

error in the user's program. This determination is left up to the

student. However, the problem has been greatly simplified due to the

_system's diagnostics and the user's ability to observe his program in

execution. An example of actual Program Verification operation is

given in Figure 9. The sample program finds the absolute value of the ACC.

The Program Verifier will not allow any program to be judged cor

rect if it does not meet stringent standards. This implies that each

program must be tested and modified until it is acceptable to the

system. The time involved in such a process is usually small but if

a student continues to have difficulty it may become quite large. For

this reason, the student may press the ATTN button at any time to halt

program simulation. Besides the usual alternatives given to him, he

is offered a special option merely to return to the latest concept
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Figure 8

Flow Chart of Program Verifier
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Figure 9.

OPERATION OF PROGRAM VERIFIER

Type in your program for this sub-task and end it with "OK".
001 :

_7500
002 :

_7402
003 :

_7040
004 :

_7402
005 :

OK
I can't tell if .this is correct. Should I execute it?
_yes

Watch as your program is executed:
First, let the (ACC) be negative.
001 : 7500
003 : 7040
004 : 7402
Your program has halted because of a "7402" command.
Is this what it was supposed to do?
_yes
Your program appears to have an error In it!
if the ACC is negative, you are not forming the 2's comp. of it.
Do you need to change your entire program segment?
no

Now many registers do you need to change?
number
_2
Type in the address, hit carriage return, then. the instruction.
_004
_7001
_005
_7402
First, let the (ACC) be negative.
001 : 7500
003 : 7040
004 : 7001
005 : 7402

Now, let the (ACC) be positive.
001 : 7500
002 : 7402
Your. program has halted because of a "7402" command.
Is this what It was supposed to do?
yes

Congratulations!!! I think your program segment works.
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entered instead of terminating system operation entirely.

The ultimate acceptance of the program by the system is based

upon its correct simulation under each initial condition. Once this

is done, the &riginal or corrected copy of the program is restored.

This is necessary again because even successful program operation may

have altered the contents of certain registers which should remain

invariant.

SEDCOM Simulator

The simulation process in MALT is made far more complex than it

need be simply due to the structure of the CPS system. The Simulator

would be almost a trivial addition if CPS were designed similarly to

the structure of a small computer. This is not the case however, so

simple program interpretation becomes an involved affair. All

manipulations, including arithmetic operations, must be performed

on character strings representing octal digits. The result is that

much system programming effort is expended on enabling the system to

perform relatively trivial tasks.

That portion of the system which actually performs the simulation

is fairly straightforward,-though somewhat bulky. Since the CPS

language i.s the vehicle for this instructional system, the SEDCOM

Simulator must obviously function in an interpretive mode. The

Verifier provides it only with the starting and correct ending location

of the program segment written by the student.

The Simulator is designed to operate much the same as the actual

PDP-8 computer, Each hardware reGister in the PD"-8 has a software

counterpart in the Simulator. The primary registers used by the

Simulator are a Memory Buffer Register (MBR), Memory Address Register
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(MAR), Defer Register (D), Instruction Register (IR), and Current

Instruction Counter (CIC). Each of the registers is st^red as a

fixed-length character string. The MAR and MBR are used to

contain, respectively, the address of any memory registers which

is referenced and the contents of that register. The D register

contains the-status of the address mode bit which indicates either

direct or indirect addressing. The CIC indicates the next instruction

in the program to be executed. Finally, the IR contains the operation
nD

code of the current instruction.

There are two types of instructions with which the Simulator

must deal. These are memory Reference Instructions (MRI) and Register

Reference Instructions (FRI). The first type involves operations on

memory registers while the latter deals only with manipulation and

testing of the Accumulator and Link contents. These groups of

instructions are handled in two completely different ways by the

system.

To simulate execution of an MRI, several steps must be performed

in the proper order. rirst, the contents of the CIC are loaded into

.the MAR and the contents of the register addressed by the MAR is put

into the MEL Next, the operation code of the instruction is

extracted and placed in the IR. The address mode bit is loaded into

the D register. The address field of the instruction can then be

loaded into the MAR and the contents of the memory register referenced

by this address is placed into the MBR. If indirect addressing is

indicated, this last process is repeated using the MBR contents as an

address field to get the proper number into the MBR. The instruction

is then simulated using the MBR contents as the operand and the;
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operation code to indicate the correct operation. In general, the

CIC is incremented by one after an MRI and sequential simulation

continues. There are instances, (a JMP or ISZ instruction), where

the contents of the CIC may be considerably altered after the

simulation of a particular instruction.

Register Reference Instructions cannot be simulated using the

same methods as the MRI. Each bit of these instructions corresponds

to a particular operation.to be performed. If multiple bits are set

to "1", then multiple operations are necessary on the Accumulator

,or Link contents. Therefore, each bit is analyzed in tun and the

corresponding operation is either performed or ignored depending on

the contents of the bit.

The process of program simulation continues until the end of the

program segment is reached. This indicates normal program termination

and control is then returned to the Verifier. in order to test the

results of the simul ln.

As mentioned abovc,-there are several errors that may exist

in a program which are independent of the purpose of that program.

These mistakes must be corrected immediately even before any other

determination of program correctness is attempted. The Simulator

therefore functions not merely'as a vehicle for program execution, it

also has the capacity to make limited judgemeNts about the basic

structure of the user's program. These determinations are strictly

syntactic howev,x, and are not to be confused with the subjective,

semantic corrections which the Program Verifier makes.

One of the simplest checks which the Simulator makes is that of

locating undefined instructions. The student is shown each such
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instruction and immediately required to correct it. A similar

situtation occurs when an instruction is found in a program in

which it clearly does not belong. Since only a limited number of

program segments are candidates for simulation, there are some

instructions which would be incorrect if included in these segments.

For example, no program segment involving 'input/output programming

is ever simulated. Therefore, any I/O instruction which is found by

the Simulator is definitely out of place and must be changed.

The Simulator also has a few more subtle monitoring abilities.

All user programs are contained to operate within the range of the

current program segment. Any attempt to branch out of this area

or to make unauthorized register references will be suppressed by

the Simulator. -Also, the program is constantly monitored for the

existence of infinite loops. If such a loop appears,t3 exist,

simulation ceases and corrective measures are taken by the student.

Appendix C illustrates a case in which an unauthorized branch was

made in the student's program.

As any error is uncovered by either the Simulator or the Verifier,

the student is asked to make the necessary revisions in his program.

Although this process often requires a redesign of the entire segment,-

it sometimes calls for only the correction of a few instructions. To

avoid re-typing of those parts of the program which have already been

accepted, the system allows the student to correct only a few

instructions if he so desires.

The verification and simulation properties of MALT were introduced

as a method of enhancing the flexibility of the system. Students tend'

to tire of constant dialogue and become bored unless the system
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progresses them through the material with reasonable swiftness. By

observing his program in action, the student is spared long waits and

needless interaction with the system. It also greatly simplifies

those Concept Routines in which it is used yet causes only a minimum

loss of program correction ability. These basic reasons, along with

the fact that student reation to this facility has been very favorable,

seem to justify its inclusion in the MALT system.

It should tow be clear exactly how the system attempts to teach

machine-language programming. The final matter to consider is the

way in which student performonce records are maintained. Chapter 7

provides a discussion of the CPS file system and how these files

are stored and evalitated by the system.



VII. STUDENT RECORDS

In order for the system to adapt its presentation to each student,

records of all student performance must be maintained. These records

are kept in three CPS files stored on a random access disk for

quick retrieval.

CPS has facilities for records to be stored in disk areas other

than those reserved for executable programs. This allows larger CPS

programs to be used because the programmer need not concern himself

with reserving storage for a large number of records. These files

can be retrieved and updated selectively so that a minimum amount of

access time is consumed. The current time spent in file retrieval

is only about four or five seconds. This delay is completely toler-

able especially because it only occurs after the student has finished

his solution program.

MALT maintains student records in three separate CPS files. Two

ofthese files are reserved for records of each individual student

and the third is used as a cumulative class performance indicator.

At the beginning of any semester, the instructor can reset all of

these files to contain null elements. This can be accomplilhed

completely; by the system using facilities in tire Instructor Mode.

As each student uses the system for the first time, a fresh file

record is established for him. The contents of the file are initialized

to reflect that the student is a beginnirig user. After each system

use, the student's records are updated to indicate his latest
1

achievement level.

Yay
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The cumulative record of each student is kept in the file

SNAMES. A diagram of the structure o: this file is given in Figure

10. This is a sequential file and occupies 352 bytes of disk storage.

It contains sixteen elements, each one being a character string of

length twenty-two.

The first eight characters in a SNAMES file entry is the student's

name. Columns nine and ten indicate the user's LEVEL value after his

last use of the system. This number is always rounded off to the

nearest tenth after the student finishes a session at the terminal.

The next two columns reflect the number of problems which the student

has solved. This (=nobles the instructor to judge the relative progress

of each student because his can compare the change in LEVEL (from the

initial value of .3) to the number of problems needed to bring about

this change.

Columns thirteen through fifteen of the-SNAMES file show the

total time in minutes each student spent using the system.- Certain

deductions concerning response time can be made from this parameter

although each such conclusion would be highly speculative. The

next four columns indicate the total number of responses which the

student made. Columns twenty through twenty-two show how many of

these responses were incorrect. These two parameters-can be used

to determine an actual numerical grade to'adequately reflect the

student's complete performance.

There is a fundamental reason why the system maintains records

of incorrect student responses as opposed to correct ones. In many

subjects taught through the use of CAI, every response can easily

be classified as being either right or wrong. In computer programming
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Figure 10.

STUPEVT FILE wrcs

strpLE ENTNES

COLUMNS ..-F 1-10 11-12 13-15 1c-19 2(!-22

'

#1 STUDENT NANE
LAST
LEVEL unEs TIME P.ESP(rSES Ennrirs

#2 CTUDENT NAME 1.0 0} 047 °o no 01E

#3 STUDENT NAME 0.5 02 013, 0017 004

04 STUDENT NAME 2.1 15 '120 0110 014

#16 STUDENT NAME 1.1 05 022 0040 003



86

however, this is not tike case. A particular sequence of machine-

language instructions which the student types in might not be exactly

the response expected by the system. It may be, however, perfectly

acceptable in that it performs the correct function with only a small

loss of program efficiendy. Such a situation should be noted to the

student but the program segment should not be considered as being

incorrect. Only sequences which obviously will not bring out the

desired results should be treated as incorrect. The system maintains

records, therefore, only of student responses which clearly were

inappropriate to the process involved.

The SHAMES file is initialized only before. the start of a

semester. As each new student enters the system a record-is allocated

to him and his-name entered into it-. All other-v9lues in the file

are set to zero, except his LEVEL which is initialized to 0.3. This

file is updated only upon completion of an-entire session at the

terminal. After. this occurs, the system logs out the terminal to

avoid a student gaining unauthorized access to his file.

The_complete history of each student's use of the system is

provided by the PROBS file, shown-in Figure 11. It is regional in

organization and occupies two disk tracks. Because of its organization

and size, only one, student's record is accessed or updated at a time.

There is currently space for the records of twenty problems for

each student. The results of each use of the system by the student

is represented as a seven-element array. Since the PROBS file can

be reset by the insttuctor at any time, there are no difficulties
.

concerning- space limitations.



ENTRY V/! Lt,

1st PROBLEM PRIMITIVE NUMGER

2nd PROBLEM PRIMITIVE NUMBER

3rd PROBLEM PRIMITIVE numn

LEVEL ON TNIS PROBLEM

TIME (IN MINUTES)

RESPONSES

_ERRORS

PROBLEM
Pl,

)ROBLEM
#20
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The seven elements of each entry are designed to provide all the

information which the system requires in evaluating student performance

on a particular problem. The first three entries indicate the number

of each respective primitive which were used in the problem. This

enables system alterations to be made if problem 'generation is not

sufficiently random. The fourth element is the student's final LEVEL

after solving this problem. Entries five through seven are equivalent

to their counterparts in the SNAMES file. They represent,. respectively,

the time spent on this problem, the number of responses made, and the

number of incorrect respOnsei. These entries enable the instructor

to isolate certain types of problems which are proving difficult to

a particular student.

The third system file, RATIOS, focuses on general class performance,

not individual achievement. This file is also direct-aceess-regional
.

but requires only one track. It consists of a 2 x 13 numerical array

with the second subscript in the range (0:12).

Each of the twelve principal-elements (the entry with the '0'

subscript -'l's a dummy record) represents the class performance on a

particular programming concept.- Each such element is termed a

Concept Ratio, (see Table 9). These concepts are more general than

those of the Concept Routines because a broad achievement indicator

which has some diagnostic validity was desired._ Several related

.Concept Routines nay be .combined to form,a larger Concept Ratio. For

instance, the second Concept. Ratio is entitled "Textual Output"

and-represents a host of programming, operations. By including all

these minor operations into one large class, the instructor is able

to achieve a better view of general class performance and to gear his

4
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Table 9.

LIST OF CONCEPT RATIOS

SUBSCRIPT OF'RATIOS FILECONCEPT RATIO

REG-TO-REG MOVEMENTS 1

TEXTUAL OUTPUT 2

READ/WRITE OPERATIONS 3

INPUT OF NUMBERS 4

TABLE SEARCHING OPERATIONS 5

ACLAULATOR MANIPULATIONS 6

INITIALIZATION OF POINTERS 7

INITIALIZATION OF COUNTERS 8

-OUTPUT OF REGISTER CONTENTS 9

SORTING TECHNIQUES 10

_OPERATIONS INVOLVING PROGRAM LOOPS- 11

MISCELLANEOUS REGISTER OPERATIONS 12
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.classroom presentation to the student's needs.

The technique of maintaining records only of broad areas of

programming was chosen for another important reason. If quite

detailed and specific concepts were utilized, small deficiencies in

the system could produce profound effects. If a particular question

or statement happened to be badly worded, it might cause virtually

every student to respond incorrectly. The corresponding Concept

Ratio score would be extremely poor despite the fact that the system

was basically at fault. However, by enlarging the scope of each

Concept Ratio to include many related, smaller operations, the effects

of such an occurrence.are completely minimized.

Each Concept-Ratio has two components which determine its

value. The first is the number of questions asked on a programming

concept and the second is a total count of incorrect responses. These
9

are stored in the Ratios array with the first subscripts 1 and 2

respectively. The value of the Concept Ratio for the jth programming

concept is:

Concept Ratio = 100
.[Ratios (2,j)

Ratios (1,j)
* 100 J

The result is a percentage value indicating the extent to which the

class mastered the corresponding programming concept.

The student records were implemented as a means of providing

structure to the progression of a student through the system. They

appear to peeorm this function well although it is basically only

a clerical one.

This chapter concludes the discussion of the operation of MALT.


